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Abstract

Both prospective and retrospective cohort, and case-control studies are some of the most important 

study designs in epidemiology because, under certain assumptions, they can mimic a randomized 

trial when done well. These assumptions include but not limited to properly accounting for two 

important sources of bias: confounding and selection bias. While not adjusting the causal 

association for an intermediate variable will yield an unbiased estimate of the exposure-outcome’s 

total causal effect, it is often that obstetricians will want to adjust for an intermediate variable to 

assess if the intermediate is the underlying driver of the association. Such a practice must be 

weighed in light of the underlying research question, and whether such an adjustment is necessary 

should be carefully considered. Gestational age is, by far, the most commonly encountered 

variable in obstetrics that is often mislabeled as a confounder when, in fact, it may be an 

intermediate. If, indeed, gestational age is an intermediate but if mistakenly labeled as a 

confounding variable and consequently adjusted in an analysis, the conclusions can be unexpected. 

The implications of this over adjustment of an intermediate as though it were a confounder can 

render an otherwise persuasive study downright meaningless. This commentary provides an 

exposition of confounding bias, collider stratification and selection biases, with applications in 

obstetrics and perinatal epidemiology.
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Introduction

Randomized controlled trials (RCT), by design, are the least affected by biases that 

otherwise remain entrenched in observational studies. Despite biases, prospective and 

retrospective cohort, and case-control studies are one of the most important study designs in 

epidemiology because, under certain assumptions, they can mimic a randomized trial. These 

assumptions include properly accounting for the numerous possible sources of biases (see 

recent text books1, 2 for a comprehensive review of biases), notably confounding and 

selection biases. Failure to address these biases can render the findings from an otherwise 

persuasive observational study from difficult to interpret at best to downright meaningless at 

worst.

Inferring causal associations was once thought feasible only in RCT designs. However, with 

the advent of modern statistical and epidemiologic methods, drawing causal inferences from 

observational studies has become tenable, but only under certain assumptions (see Cole and 

Hernan3 for a review). This commentary deals with the following questions: What are the 

some of the criteria to infer causal associations in observational studies? Where does 

confounding fit in to the big picture for drawing causal inferences? What are the connections 

and caveats between these two concepts? Can sound research go astray when variables 

thought to be confounders are actually intermediates and are adjusted in an exposure-disease 

paradigm? What are these intermediates, how does one recognize them, and what price does 

one pay when models are “over-adjusted” for these intermediaries? The impetus and 

motivation for this commentary is the confusion in the myriad of manuscripts in obstetrics 

and gynecology journals where there appears to be a general confusion regarding the right 

answers to questions such as “which variables to adjust” and “which ones to steer clear of”. 

Many a time, such intermediates go unrecognized. These are the topics of rest of this 

commentary.

An Illustrative Example with Implications in Obstetrics

Before we delve into a discussion of biases in observational epidemiology, we highlight an 

important illustration in perinatal epidemiology and obstetrics to motivate the problem. The 

example relates to a study designed to estimate the association of preeclampsia and the risk 

of cerebral palsy.4 Preeclampsia is a strong predictor of gestational age at delivery.5, 6 Even 

in the absence of preeclampsia, the early delivery itself confers increased risk of cerebral 

palsy;7 in the setting of preeclampsia and early delivery, this risk is appears compounded.8 It 

is, therefore, tempting to adjust the total effect of the preeclampsia-cerebral palsy causal 

association for gestational age. Because of this adjustment, studies evaluating the association 

between preeclampsia and cerebral palsy have uncovered a puzzling paradox. At preterm 
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gestations (implying implicit stratification or restriction for gestational age), preeclampsia 

remains protective for cerebral palsy, with a reversal in risk at term gestations.

Using a population-based cohort study from Norway with 849 cerebral palsy cases and 

615,668 normal infants, Strand and colleagues4 report a 2.5-fold increased odds of cerebral 

palsy among infants born to preeclamptic mothers (odds ratio [OR] 2.5, 95% confidence 

interval [CI] 2.0, 3.2). This OR was slightly attenuated (OR 2.1, 95% CI 1.7, 2.7) when the 

association was adjusted for infants that were small for gestational age (SGA). Further 

adjustments for both SGA and preterm delivery reversed the association in favor of 

preeclampsia being protective of cerebral palsy (OR 0.7, 95% CI 0.6, 1.0) (this paradoxical 

observation of reduced risk of cerebral palsy at preterm gestations in the setting of 

preeclampsia has been reported in several other studies).9 Someone unfamiliar with the 

concepts of confounding and intermediates might quickly (and incorrectly, of course!) 

interpret the association as “it is better for women diagnosed with preeclampsia be delivered 

at preterm gestations, so cerebral palsy can be prevented or its risk reduced”. Is an 

adjustment for SGA and preterm delivery appropriate? Will such an adjustment yield an 

unbiased estimate of the purported association? Should one even conclude that at preterm 

gestations, preeclampsia is protective of cerebral palsy?

Indeed, based on the strength of evidence, and given that preeclampsia is associated with 

gestational age at delivery,10–13 and gestational age, in turn, is a powerful predictor of 

cerebral palsy,8 one might infer that the preeclampsia-preterm delivery-cerebral palsy 

association might be causal. This argument has led epidemiologists to investigate if 

unmeasured confounding may be a reason for this paradox.14, 15 In other words, women 

diagnosed with preterm preeclampsia are so inherently different from those that deliver at 

term, and adjustment for all measured risk factors (for preterm delivery) may still not resolve 

the paradox. The potential for unmeasured confounding (and failure to correct for this bias), 

coupled with inappropriate adjustment for an intermediate variable, is the underlying culprit 

of the paradox.16 When statistical methods to account for unmeasured confounders are 

incorporated, the paradox resolves and selection bias can be eliminated! If the intermediate 

variable is not considered in an analysis, the paradox does not arise, as seen in the 

preeclampsia-cerebral palsy example with a total effect odds ratio of 2.5 (95% CI 2.0, 3.2) 

discussed earlier.

Such paradoxes are not uncommon in epidemiology. For example, perinatal mortality being 

lower at preterm than at term gestations involving comparisons between babies born at high 

versus low altitudes,17 African-American versus Caucasian18 and Hispanic babies,19 twins 

versus singletons,20 US births compared with Norwegian21 and Belgian births,22 and the 

protective effect of smoking on preeclampsia,23 to name a few.

Unfortunately, such solutions often come with drawbacks – by not adjusting for an 

intermediary variable one cannot separate the effects of preeclampsia on cerebral palsy that 

operates through preterm delivery (called the indirect or “mediated effect”) versus the risk of 

cerebral palsy in relation to preeclampsia that is independent of preterm delivery (called the 

direct effect). In doing so, we are left addressing a question that is fundamentally different 

from the one that was originally intended: what is the total effect of the preeclampsia-
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cerebral palsy association, regardless of gestational age? While this solution is sound from 

an epidemiologists’ perspective, it does leave the astute obstetrician with the lingering 

question… “Yes, of course, but what about gestational age?” This issue is addressed later in 

the commentary.

Directed Acyclic Graph (DAG)

Before delving in to an understanding confounding bias, or broadly how a relationship 

between an exposure and an outcome can be depicted, it is important to figure out a way to 

represent them graphically. The DAG is a tool whose utility lies in developing a “blue print” 

of how the exposure-outcome relationship can be depicted with confounding, exposures of 

interest, and mediating variables.24 A DAG also provides an indication of which variables 

are confounders that need to be adjusted for in an analysis, and which ones do not qualify as 

confounders. DAGs can also help to identify the presence of selection bias.25 Pearl26 

formalized the concept of DAGs, also referred to as causal diagrams. Good introductions to 

DAGs, their conceptualization, construction, and applicability to study designs are 

available,15, 27, 28 and we urge readers to familiarize themselves with this important 

method.29

As the name suggests, the construction of a DAG involves three essential functions: (i) 

directed; (ii) acyclic; and (iii) graph; each function is briefly described here. The relationship 

amongst variables is depicted in unidirectional arrows or “paths” (never bidirectional). This 

is referred to as “directed”. The second is “acyclic”, which denotes that the paths cannot be 

depicted as a circle. Lastly, the “graph” indicates that the whole conceptualization of the 

causal pathways connecting all the variables can be graphically visualized.

Each variable in a DAG is called a node, with the causal paths connecting two or more 

nodes. In figure 1a, for example, X is considered as a cause or an ancestor of Y; stated 

backwards, Y is a descendant of (or caused by) X. One excellent and free resource to depict 

and develop complicated DAG30 can be found at http://dagitty.com/ where the minimal set 

of adjustment variables is the resulting output.

Confounding Bias

Confounding bias occurs when there is a failure to adjust for common causes of both the 

exposure and the outcome. The criteria for confounding are that the third variable (the 

confounder, C) should be casually associated with both the exposure (X) and the outcome 

(Y), and C is not on the causal pathway between X and Y (Figure 1a).31, 32 An extension of 

this definition is depicted in Figure 1b, which demonstrates that unmeasured common causes 

(U) can also be a source of confounding of the X→Y relationship. For example, sub-fertility 

(as a marker for an underlying condition that results in both conception delay and 

preeclampsia, should a conception occur) serves as a common cause of both maternal age at 

conception and preeclampsia, and its effect on cerebral palsy only operates through age and 

preeclampsia. In this scenario, not considering sub-fertility status would lead to a 

confounding bias on the estimate of the impact of preeclampsia on cerebral palsy.
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Role of Intermediate Variables and Overadjustment

To place terminology into context, we refer to overadjustment as the undesirable 

consequence of adjusting for an intermediate variable that lies on a causal pathway from 

exposure to outcome.15, 23 Simply put, these are variables that do not qualify as 

confounders. Figure 2a shows a causal DAG representing the simplest case of 

overadjustment bias. In this scenario, one can estimate the total effect of X on Y by not 

adjusting for the intermediate variable I. However, if control is made for the intermediate 

variable I, then the total causal effect of the X→Y association cannot be consistently 

estimated. Heretofore, we broadly define “control” to imply regression-based adjustment, 

stratification, or matching on the intermediary variable. Importantly, “restriction” also falls 

in this broad category that we refer to as “control”. An example of restriction is one where 

an investigator restricts the study of preeclampsia on cerebral palsy to babies delivered 

preterm.

Referring back to the example, if the model includes an adjustment for preterm delivery (I), 

a variable in the causal pathway between preeclampsia and cerebral palsy,34 the association 

will be biased. Since gestational age appears in the causal pathway between preeclampsia 

and cerebral palsy, one can separate the direct and indirect preeclampsia effects by simply 

adjusting for gestational age, or its proxy such as preterm delivery. However, it will be under 

the premise that there are no other unmeasured confounders amongst these three variables 

(Fig 2a), or adjustment for a consequence of an intermediate (Figure 2b). Note that in Figure 

2b, the intermediate variable I is the consequence (or a proxy of the consequence) of the 

intermediate variable U, which itself is typically unmeasured.

An example of this scenario is adjustment for preterm delivery status on the relationship 

between preeclampsia and cerebral palsy because preterm status is a direct consequence of 

gestational age (or descendent of an intermediate variable). One can again consistently 

estimate the total causal effect of exposure on outcome by ignoring I, the imperfect proxy 

for the unmeasured intermediate variable U. However, if one controls for the variable I in 

Figure 2b, which is a proxy for variable U (on a causal pathway between exposure and 

outcome) the total causal effect of the X→Y association again cannot be consistently 

estimated. To clarify, if an intermediate such as gestational age is adjusted on the 

preeclampsia-cerebral palsy association, the total effect will be underestimated. Such 

adjustments will undoubtedly result in biased (and therefore incorrect) estimates of 

associations.

If one does adjust for gestational age or preterm delivery in the presence of an unmeasured 

confounder between gestational age and cerebral palsy, the preeclampsia-cerebral palsy will 

be rendered biased — a bias called “collider stratification bias”35, 36 (Figure 2c). A collider 

stratification bias occurs when no attempt is made to distinguish a variable that is a 

confounder versus the variable that is in the causal pathway (the intermediate variable), and 

when the intermediate variable is adjusted in an analysis.
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Collider Stratification Bias or Selection Bias? Same Thing, Different Name

Collider stratification bias is a phenomenon that occurs when the exposure-outcome 

association is induced by control (or matching, restriction, stratification, or multivariable 

adjustment) on an intermediate variable I that is affected by the exposure and a sharing 

common causes of the intermediate with the outcome (Figure 2c). In the preeclampsia-

cerebral palsy example, a collider bias will rear its ugly head when the preeclampsia-

cerebral palsy association is adjusted for gestational age (or preterm delivery) combined 

with the presence of an unmeasured confounder of the gestational age →cerebral palsy 

relationship, even in the absence of an association of gestational age and cerebral palsy. A 

potential unmeasured intermediate may be placental abruption, and a potential unmeasured 

confounder may include birth defects or race. In such a scenario, the total causal effect of the 

preeclampsia-cerebral palsy association will be biased due to the adjustment of an 

intermediate variable coupled with one or more unmeasured confounders. However, not 

adjusting for gestational age avoids the collider and will yield an unbiased estimate of the 

total effect.

Selection bias is defined as the distortion of an association between two variables that occurs 

by “controlling” on a common effect creating a collider. The result in this setting is a 

selection bias that is different from bias due to confounding. The vagueness in the previous 

definitions of confounding may cause confusion between confounding and selection bias. 

Confounding is a bias due to the existence of a common cause of exposure and outcome, 

which, by definition, occurs temporally prior to both exposure and outcome.37 In contrast, a 

common effect, such as gestational age in the preeclampsia-cerebral palsy scenario, must 

occur temporally after the exposure (preeclampsia → gestational age). Adjusting on such a 

common effect (i.e., a collider) can result in selection bias. In the preeclampsia-cerebral 

palsy example, “gestational age” is a collider.

Collider Stratification Bias and Overadjustment

The combined presence of unmeasured confounding between the intermediate variable and 

the outcome, and inappropriate adjustment for an intermediate variable is what leads to 

selection bias. Specifically, we introduce DAGs in Figure 3 that represent collider 

stratification bias with three illustrations for each scenario. The left panels show the 

theoretical framework for an intermediate variable, the middle panels show illustrations of 

how adjusting for an intermediate variable, I, depicted in a box and labeled a “collider” with 

gestational age as the intermediate, will induce bias of the preeclampsia-cerebral palsy 

association. The right panels show the risks of cerebral palsy on the y-axis, by gestational 

age on the x-axis, among women with and without preeclampsia. Placental abruption is 

assumed to be an unmeasured variable.

To highlight the general problem, we illustrate a sequence of causal scenarios where we 

control variables affected by exposure, such as U or I in the DAG that could depict 

gestational age. Alternatively, adjusting for a consequence or descending proxy I of an 

unmeasured intermediate variable U (or U itself, if it were measured), is also susceptible to 

selection bias or collider-stratification bias. In this scenario, the unmeasured common cause 
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V of the proxy variable M and the outcome Y causes additional bias in the association 

between exposure X and outcome Y within levels of M. Figure 3a–f are 6 possible scenarios 

extending the DAG’s in Figure 2 to allow unmeasured common causes of any set of 

variables.

The Relationship Between DAGs and Their Functional Forms

As an extension of the preeclampsia-cerebral palsy example, one can also see how different 

causal scenarios can render different functional forms or shapes on the relationship between 

preeclampsia and cerebral palsy as a function of gestational age stratification or adjustment, 

inspired by the work of Hernandez-Diaz and colleagues.15 The simplest causal DAG to 

describe this scenario is depicted in Figure 3a. The DAG implies no association between 

gestational age, preeclampsia and cerebral palsy, which would make the incidence rate of 

cerebral palsy curve flat, meaning no association of preeclampsia with cerebral palsy at all 

levels of gestational age. The shape of this association could, in principle still under the 

setting of no association between preeclampsia and cerebral palsy, be modified depending 

on the presence of an unmeasured or measured common cause between cerebral palsy and 

gestational age, such as placental abruption (Figure 3b). The variable U (or abruption) 

guarantees that the incidence of cerebral palsy will not be flat (as seen in Figure 3a), creating 

a spurious association between preeclampsia and cerebral palsy when adjusted for 

gestational age. If one were to change the assumptions and assume that gestational age, but 

not preeclampsia, has a direct effect on cerebral palsy, we can see the simplest structure 

depicted in Figure 3c. In this scenario, gestational age causes cerebral palsy, and thus the 

cerebral palsy curve is not flat. However, when an adjustment is made for gestational age, 

there is no association between preeclampsia and cerebral palsy. The cerebral palsy curve is 

the same for women experiencing preeclampsia as normotensive women. In other words, the 

(unconditional) association between preeclampsia and cerebral palsy is mediated entirely 

through the preeclampsia effect on gestational age. Again, as in Figure 3b, the presence of 

another unmeasured variable U such a placental abruption, will induce an association 

between preeclampsia and cerebral palsy conditional on gestational age (Figure 3d). This 

will lead to a biased relationship induced by improper adjustment for the intermediate 

variable gestational age, and sometimes creating paradoxical results due to selection bias.

Now as depicted in Figure 3e–h, we assume the additional existence of a direct effect of 

preeclampsia on cerebral palsy to all of the previously described situations. By adding a 

direct effect of preeclampsia on cerebral palsy, the cerebral palsy curve for preeclampsia is 

also shifted upwards across all gestational age levels and we assume the effect of 

preeclampsia is not modified by gestational age depicted in Figure 3e. A common 

unmeasured cause, such as abruption, induces a new source of association between 

preeclampsia and cerebral palsy conditional on gestational age, which may result in 

intersecting the incidence of cerebral palsy curves, even under the assumption that 

preeclampsia increases cerebral palsy at all gestational ages (Figure 3f).

Let’s now assume that there is no causal relationship between gestational age and cerebral 

palsy as depicted in Figure 3g; cerebral palsy curves are therefore flat across gestational age. 

Because of the direct effect of preeclampsia on cerebral palsy, the curve for women with 
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preeclampsia is shifted upwards. Again, by adding the unmeasured common causes 

(abruption, for example) of gestational age and cerebral palsy (Figure 3h) in the causal 

model, we induce a spurious association and selection bias.

Why the Confusion?

Some confusion between confounding and selection bias may have resulted from definitions 

of confounding, which were not explicit about confounding being a bias due to the existence 

of a common cause of exposure and outcome. By definition, a common cause must occur 

“temporally prior” to both the exposure and the outcome. However, a way to control for 

confounding includes adjusting for a measured confounder that may occur temporally after 

(posterior) the exposure if it is on a causal pathway from the common cause to the outcome, 

or temporally after both the exposure and outcome if it is a consequence (descendant) of the 

common cause. Getting back to the preeclampsia-cerebral palsy example, a confounder that 

would meet this criterion is gestational age at delivery. In contrast, by definition, a common 

effect must temporally occur after both the exposure and outcome. Selection bias results 

when one adjusts an exposure-outcome association on such a common effect. This type of 

adjustment will render the estimates of association measures biased. Some commonly 

encountered scenarios in obstetrics and gynecology of confounding and overadjustment are 

presented in Table 1.

So how do we resolve this confusion? The definitions of what constitutes a confounder 

versus an intermediate are highly nuanced, yet can profoundly affect inferences in wrong 

hands. A variable labeled as a confounder for one causal scenario may actually be an 

intermediate in a different causal question. This alone is sufficient to indicate that there are 

no methods to distinguish one from another, a phenomenon that arguably equates to a “black 

box” epidemiology approach38, 39 (as a word of caution, the authors of this manuscript are 

not agnostic toward black-box epidemiology). Approaching the variable as a confounder 

versus an intermediate is best determined keeping the causal question in mind, and allowing 

biology to guide the investigator to arrive at the correct labeling of which is which, with 

DAG’s as a statistical tool to arrive at the distinction.

Where Do We Go from Here?

Recognizing the distinctions between a confounder versus an intermediate variable is the 

absolute first step in sound epidemiologic practice. Recognizing an impending collider 

stratification or selection bias when a collider variable is mistakenly (or knowingly) labeled 

as a confounder is perhaps the second step to sound analysis and reporting. Laying down the 

blue print of the various pathways linking the exposure to the outcome (DAG) is paramount 

for all studies. While not adjusting the causal association for an intermediate variable 

(overadjustment) will yield an unbiased estimate of the exposure-outcome’s total causal 

effect, it is often that obstetricians will want to adjust for an intermediate variable – 

gestational age, in particular – to assess if the intermediate is the underlying driver of the 

association. This phenomenon is an unfortunate occurrence in several noteworthy 

manuscripts in obstetrics and gynecology, and all science goes astray! Such adjustments may 

seem trivial, important, and downright essential for meaningful clinical interpretations, but 
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additional steps must be taken to ensure that adjustment for an intermediate doesn’t leave the 

association biased.

Three approaches can be taken to estimate the effect of an exposure on the outcome while 

controlling for an intermediate: conditioning on the predicted risk of the intermediate, 

conditioning on the intermediate itself with sensitivity analysis, and conditioning on the 

principal stratum.40, 41 Each approach carries with it a different interpretation, a different set 

of assumptions and, when relevant, different methods for sensitivity analysis. As the existing 

literature has made clear, conditioning on an intermediate in perinatal epidemiology can be 

problematic and can give rise to severe biases, such as overadjustment and collider 

stratification biases.

Depending on the scientific question, conditioning on an intermediate is not necessary and is 

best avoided. Nevertheless, there are situations in which such conditional effects are of 

scientific or policy interest.42 We have shown that several alternative approaches40 can be 

used to draw inferences in such settings. These methodological tools are imperfect, rely on 

strong assumptions, and call for cautious interpretation of the causal associations. In a 

cleverly titled manuscript entitled “Wizard of Odds”, MacLehose and Kauffman43 argue that 

the approaches suggested (conditioning on predicted risk of the intermediate, sensitivity 

analysis and principal stratum) will, in the real word, probably not be that helpful to us, even 

though they are all reasonable and grounded in theory. Nonetheless, we believe that these 

methods do have a place in causal inference, and they are all useful to provide reasoning 

regarding the direct and conditional effects of an exposure on an outcome with 

intermediates.

Some Caveats

For estimation of total causal effects, not only is it unnecessary, but it can also harmful, to 

adjust for a variable on a causal pathway from exposure to disease, or for a consequence 

(descending proxy) of a variable on a causal pathway from exposure to outcome. Estimation 

of direct effects of exposures (such as the effect of preeclampsia not mediated through 

gestational age) on outcomes (such as cerebral palsy) by controlling for an intermediate 

variable (such as gestational age) are not valid when there are unmeasured shared causes of 

gestational age and cerebral palsy. Such estimates are vulnerable to collider-stratification 

bias. Concluding an absence of a collider bias based on the RRs with and without 

adjustment for the collider being “similar” is no justification to retain the adjustment for a 

collider – such arguments should be avoided. The approaches we have described in this 

commentary are applicable to perinatal epidemiology more generally. Conditioning (or 

matching, restriction, stratification or multivariable adjustment) on an intermediate in 

perinatal epidemiology (or even beyond!) can be problematic and will give rise to biased 

associations leading to incorrect biological inferences.
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Key Messages

• An understanding of the intricacies of, and distinctions between, a confounder 

and an intermediate variable, remains essential for drawing robust inferences

• A confounder is a variable that should be casually associated with both the 

exposure and the outcome, and is not on the causal pathway between X and Y. 

An unmeasured common cause can also be a source of confounding of the 

X→Y relationship

• We refer to overadjustment as the undesirable consequence of adjusting for an 

intermediate variable that lies on a causal pathway from exposure to outcome

• Avoiding an impending collider stratification or selection bias when a collider 

variable is mistakenly (or knowingly) adjusted (or stratified or matched) in a 

model as a confounder is paramount

• Laying down the blue print of the various pathways linking an exposure to the 

outcome through a Directed Acyclic Graph (DAG) will help in understanding 

the connections amongst the variables, and will provide indications of which 

confounders need to be adjusted and which ones should not be adjusted

• While not adjusting the causal association for an intermediate variable (over-

adjustment) will yield an unbiased estimate of the exposure-outcome’s total 

causal effect, it is often that obstetricians will want to adjust for an 

intermediate variable to assess if the intermediate is the underlying driver of 

the association.

• Gestational age is, by far, the most common variable that is often mislabeled 

as a confounder when, in fact, it may be an intermediate. Control for such 

intermediates must be weighed in light of the underlying research question, 

and whether such an adjustment is necessary should be carefully considered
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Figure 1. 
DAGs representing two scenarios for confounding. The left panels show the framework for 

confounding, and the right panels provide illustrations of confounding of the preeclampsia 

(PE) and cerebral palsy (CP) association with maternal age (Age) as a potential confounder, 

and sub-fertility as an unmeasured confounder

We denote sub-fertility as an unmeasured confounder in the broadest sense when, in fact, 

sub-fertility may serve as a marker for an underlying condition that results in both 

conception delay and preeclampsia, should a conception occur
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Figure 2. 
DAGs representing three scenarios for variables acting as intermediates. The left panels 

show the framework for an intermediate variable, and the right panels show illustrations of 

how an intermediate variable, gestational age (GA), may affect the preeclampsia (PE) and 

cerebral palsy (CP) association, with placental abruption as an unmeasured intermediate (U). 

V is another unmeasured confounder, for example, birth defects
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Figure 3. 
DAGs representing collider stratification bias with three illustrations for each scenario. The 

left panels show the theoretical framework for an intermediate variable, the middle panels 

show illustrations of how adjusting for an intermediate variable, I, depicted in a box and 

labeled a “collider” with gestational age (GA) as the intermediate, will induce bias of the 

preeclampsia (PE) and cerebral palsy (CP) association. The right panels show the risks of 

cerebral palsy on the y-axis by gestational age on the x-axis, among women with (solid line) 

and without preeclampsia (dashed line). Placental abruption is assumed to be an unmeasured 

variable.
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Table 1

Some commonly encountered scenarios in obstetrics where adjustment for confounding factors are judged 

appropriate or inappropriate

Research question Main exposure (X) Outcome (Y) Confounding/intermediate Estimation of the 
total effect

Is preterm birth 
associated with 
increased perinatal 
mortality?

Preterm birth Perinatal mortality Smoking during pregnancy
Smoking is a 
confounder; should 
be adjusted

Does preterm birth 
confer increased risk 
of neurological 
deficits?

Preterm birth Neurological outcome at 
two years Chorioamnionitis

Chorioamnionitis 
is a confounder; 
should be adjusted

Is low first trimester 
PAPP-A associated 
with increased risk of 
placental abruption?

PAPP-A Placental abruption Smoking

Pre-pregnancy 
smoking preceding 
PAPP-A can be a 
confounder

Does preeclampsia 
confer protection for 
cerebral palsy at 
preterm gestations?

Preeclampsia Cerebral palsy Gestational age

Gestational age is 
an intermediate 
variable; should 
not be adjusted

Is prepregnancy 
maternal obesity 
associated with 
increased risk of 
stillbirth?

Prepregnancy obesity (BMI) Stillbirth Weight gain during 
pregnancy

Weight gain is an 
intermediate 
variable; should 
not be adjusted44

Is small for 
gestational age (a 
proxy for IUGR) 
associated with 
increased stillbirth 
risk?

Small for gestational age Stillbirth Prepregnancy BMI

Prepregnancy BMI 
is a confounder, 
and requires 
adjusting for it

Is weight gain in the 
first pregnancy 
associated with the 
risk of small for 
gestational age 
infants in the second 
pregnancy?

Weight gain in the first pregnancy Small for gestational age 
in the second pregnancy

Prepregnancy BMI in the 
second pregnancy

Prepregnancy BMI 
in the second 
pregnancy is an 
intermediate; 
should not be 
adjusted

Does maternal 
calcium 
supplementation 
during pregnancy 
reduce childhood 
blood pressure?

Maternal calcium supplementation Childhood blood pressure Infant weight

Infant weight is an 
intermediate 
variable; should 
not be adjusted

Does maternal 
nutrition supplement 
during pregnancy 
reduce infant 
mortality?

Maternal nutrition Infant mortality Maternal weight gain

Maternal weight 
gain is an 
intermediate 
variable; should 
not be adjusted

Will intrapartum 
MgSO4 

administration in 
women in preterm 
labor reduce the risk 
of cerebral palsy?

Magnesium sulfate (MgSO4) Cerebral palsy Gestational age

Since gestational 
age is both a cause 
of the exposure and 
the outcome, it 
should be adjusted
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